1 of 13

Exponential Function

Has the form $y = ab^x$ where $a \neq 0$ and base b is a positive real number other than 1.

Exponential Growth Function When a > 0 and b > 1b is called the **growth factor**.

Exponential Decay Function When a > 0 and 0 < b < 1b is called the **decay factor**.

Parent Function for Exponential Growth

The function $f(x) = b^x$ where b > 1The domain is all real numbers. Range is y > 0

3 of 13

Parent Function for Exponential Decay

The function $f(x) = b^x$ where 0 < b < 1The domain is all real numbers. Range is y > 0

4 of 13

Exponential Functions

$$f(x) = ab^{x} \quad b > 0 \qquad \text{What if?} \quad f(x) = 3(\cancel{})^{x}$$
$$f(0) = 3 \qquad f(2) = 12 \quad \text{Find } f(x)$$
$$f(x) = 3(2)^{x}$$

Practice

1. f(0) = 5 f(3) = 402. f(0) = 80 f(4) = 5 $f(x) = 5(2)^x$ $f(x) = 80\left(\frac{1}{2}\right)^x$

5 of 13

Exponential Functions

6 of 13

Exponential Functions

x h(x)
$$h(x) = ab^x$$

-2 128
2 $\frac{1}{2}$
 $h(x) = 8\left(\frac{1}{4}\right)^x$

6.4 - Transformations of Exponential and Logarithmic Functions

7 of 13

Transformations

 $f(x) = 3^x$

How do you transform f(x) to obtain h(x)?

a . $h(x) = 3^{x+2}$

Translate left 2

 $b \cdot h(x) = 4(3)^x$

vertical stretch 4

6.4 - Transformations of Exponential and Logarithmic Functions

Transformations

 $f(x) = 2^x$

How do you transform f(x) to obtain h(x)?

 $a \cdot h(x) = 2^x + 3$

Translate up 3

 $b \cdot h(x) = 2^{3x}$

Horizontal shrink 1/3

$$c \cdot h(x) = \left(\frac{1}{4}\right)^x + 7$$
$$= 2^{-2x} + 7$$

Reflect y-axis horz. shrink 1/2 translate up 7

$$d \cdot h(x) = \left(\frac{\sqrt{2}}{4}\right)^{-x}$$
$$= 2^{3x/2}$$

Horz. shrink 2/3

8 of 13

6.2 - The Natural Base e

Euler's Constant

Called the natural base and denoted by e.

Example: Compounded Interest

R = 12 %Interest compounded monthlyP = \$100Principal $FV = 100 \left(1 + \frac{0.12}{12}\right)^{12}$ Future value after 12 months

What if compounded daily? Hourly? ...

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e = 2.71828...$$

6.2 - The Natural Base e

Euler's Constant

Called the <u>natural base</u> and denoted by *e*.

The actual value is e = 2.71828182846...

e can be calculated by the expression $(1 + \frac{1}{x})^x$ as x approaches infinity.

x	10 ¹	10 ²	10 ³	104	10 ⁵	106
$\left(1+\frac{1}{x}\right)^{x}$	2.59374	2.70481	2.71692	2.71815	2.71827	2.71828

6.3 - Logarithms and Logarithmic Functions 11 of 13 Logarithmic Functions

$3^5 = 3^x$ $x = 5$	$log_3 3^5 = log_3 3^x$ $5 = x$			
$log_{\frac{1}{3}}\left(\frac{\sqrt{3}}{9}\right) = x$ $(1)^{x} \sqrt{3}$	$3^{-x} = 3^{-1.5}$			
$\left(\frac{1}{3}\right) = \frac{\sqrt{3}}{9}$ Practice 1. $\log_3 81$ $x = 4$	$x = 1.5$ 2. $\log_2 \frac{1}{16}$ $x = -4$	3. $\log_4 32$ $x = \frac{5}{4}$		

6.3 - Logarithms and Logarithmic Functions Graphing Logarithmic Functions

$$g(x) = 10^{x}$$

 $g^{-1}(x) = f(x) = \log_{10} x$

What must be positive?

$$y = \log_b a$$

y is all real numbers a > 0b > 0 Graph of $f(x) = \log_b x$ for b > 1

6.3 - Logarithms and Logarithmic Functions Solving Logarithmic Functions

$$log_3 x = 2 \qquad 3^2 = x \qquad log_x 16 = 2 \qquad x^2 = 16 \\ x = 9 \qquad x = 4, - 4$$

Practice 1. $\log_6 x = 2$ x = 362. $\log_x \frac{1}{9} = -2$ 3. $\log_4 x = -\frac{3}{2}$ x = 3 $x = \frac{1}{8}$

What about?
$$x = \log_{\sqrt{2}} \left(\frac{\sqrt{2}}{32} \right)$$

x = -9